

Energy. Intelligence. Impact.

3-6 November 2025 Abu Dhabi, UAE

Next Generation Power Systems for the New Digital Era

Ana Gorgyan Independent Power Corporation PLC

Independent Power Corporation PLC

- British Power Developer
- 30-Year Track Record
- 10 GW of Ownership / Operatorship

Karaganda GRES II
608 MW Coal
Second largest coal fired plant in Kazakhstan

Guaracachi
O&M > 500 MW of gas-fired capacity in Bolivia
Installation of new OCGT and CCGT capacity > 300 MW

Chaco
90 MW OCGT
BPs aeroderivative fleet for a gas field Bulo Bulo, Bolivia

Newcastle Cogeneration 18 MW CHP Syn Gas First IPP in South Africa, KwaZulu Natal

Al Hamra I 45 MW OCGT

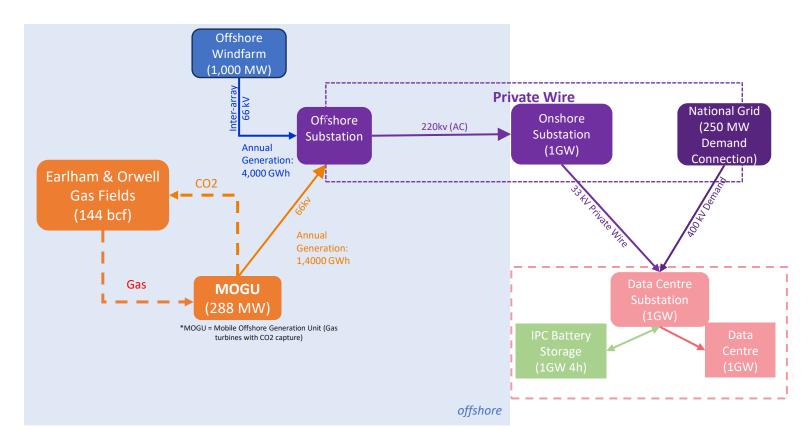
First aeroderivative GTs in Ras Al Khaimah, UAE, built on fasttrack

Energia del Sur
134 MW CCGT
First CAF forward sale
agreement for CERs in
Argentina

How AI is Reshaping Power Demand

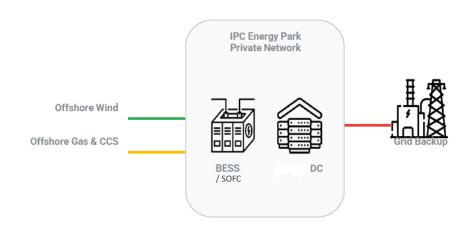
IPC is reshaping its portfolio to deliver reliable, sustainable energy for a new generation of power users.

- Al drives innovation and optimisation
- ➤ Al is the fastest-growing electricity consumer
- Power intensity of AI doubles approximately every 18 months
- > Challenges:
 - → Grid Infrastructure bottlenecks
 - → Power generation constraints
 - → Regulatory and Permitting delays



Our Vision: Behind the Meter Generation

- Behind the Meter Generation advantages:
 - Independent from grid stress
 - Control electricity costs
 - Added flexible
 - Holistic Design
 - Carbon-conscious strategy


Integrated Hybrid Systems

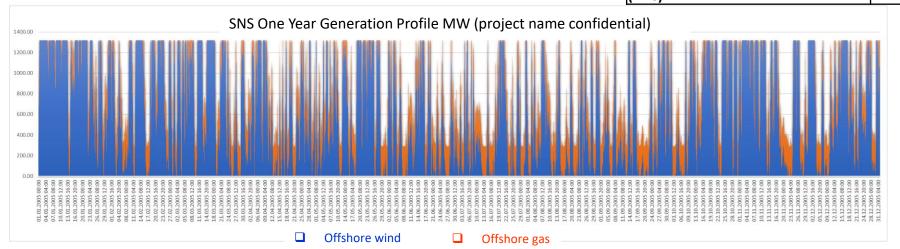
Optimised Hybrid Energy Mix

- > ~70% Renewable (Offshore wind)
- ~30% Dispatchable (Gas turbines peaking + Fuel cells base)
- Battery storage for second-by-second balancing
- + Smarter Load Shifting (Al helping Al)

> Hybrid generation strategy:

- > At IPC, we take integration to the next level. Our vision combines multiple technologies into a single, optimised system:
- Together, these layers create resilient, low-carbon, and commercially viable systems capable of powering demanding applications like large-scale data centres.
- > Essentially, hybrid systems make energy delivery faster, more cost-effective, smarter, and more dependable.
- Power Management & Control is essential for implementing hybrid systems as performance depends heavily on power-sharing strategies.

Example of Offshore Gas & Wind Integration

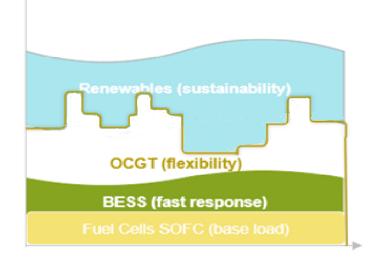


- Hybrid & Co-Location Concept:
 - Shared grid connection and substation
 - Optimised capex & opex
 - Higher transmission asset utilisation: from ~45% to up to 75%

Flagship hybrid project in Southern North Sea

	MW	GWh	Grid Export Capacity
Grid Export Limit (A)	1320	11,563	100%
Offshore Wind Generation (B)	1380	5,762	49.8%
"Spare capacity" in grid connection (A-B)		5,801	
Offshore Gas Max generation (C)	288	1,590	13.8%
Offshore Wind + Gas Generation (B+C)		7,352	63.6%

Example of Integrated Hybrid System

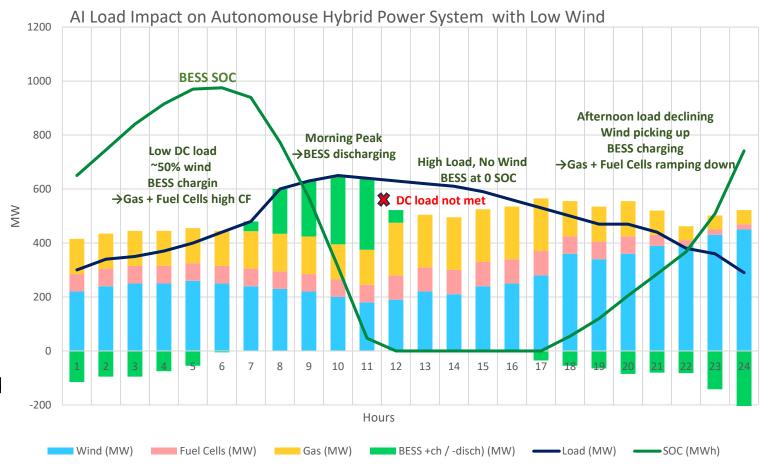


No Reserve

Parameter	Value	Comment
PeakLoad	650 MW	Data centre peak
Offshore Wind Capacity	$0.70 \times 650 = 455 \text{MW}$	Primary energy source
Fuel Cell Capacity	$0.10 \times 650 = 65 \text{MW}$	Must run \geq 30% of 65 MW \rightarrow 19.5 MW minimum
Gas-Fired Capacity	$0.20 \times 650 = 130 \text{MW}$	Flexible dispatch
BESS	$650 \text{MW} \times 2 \text{h} = 1,300 \text{MWh}$	High-power battery, energy-shifting
Dispatch Priority	1. Wind \rightarrow 2. BESS \rightarrow 3. Fuel cells \rightarrow 4. Gas	Maximize renewables, then battery, then fuel cells, lastly gas

Dispatch logic:

- Wind always used first; any shortfall met by BESS (if SOC > 0) →
- 2. \rightarrow Fuel cells run at least at minimum 30% load (19.5 MW), can ramp up if needed \rightarrow
- 3. \rightarrow Gas fills any remaining gap (with minimum load of 40%) \rightarrow
- → BESS charges only from surplus wind (if load < wind + min fuel cells).



Integrated Hybrid System - No Reserve

24-Hour Dispatch Profile

Conclusion:

Not enough redundancy designed for extended wind calm periods.

Integrated Hybrid System - 12-hour back-up

To achieve 12 hour back-uupin low-carbon design we implement hybrid approach combining additional redundancy with fuel cells, gas and BESS, and operational strategies like load shifting or partial curtailment for non-critical loads.

✓ Balances reliability especially for grid isolated data centres

✓ Mixture of low carbon

✓ Bridges calm periods > 4 h

Cons

✓ High CAPEX
✓ Added OPEX

Pros

Parameter Value Notes

Peak load 650 MW Data centre

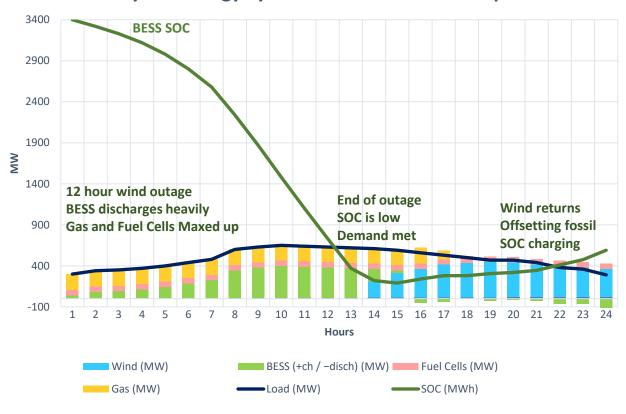
Offshore wind capacity 455 MW nominal Can drop to 0 MW for worst-case scenario

Fuel cells capacity 65 MW Must-run ≥ 30% (19.5 MW)

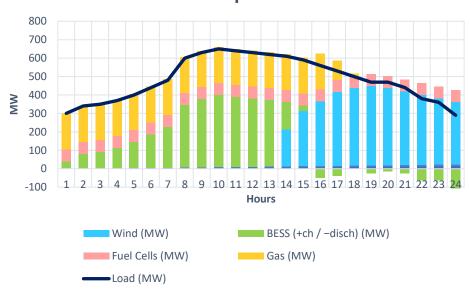
Gas-fired capacity 195 MW Increased to ensure 12 h backup with BESS

BESS 650 MW x 7 h duration = 4,550 MWh Sized to cover wind outage

Dispatch priority 1. Wind \rightarrow 2. BESS \rightarrow 3. Fuel cells \rightarrow 4. Gas Minimize carbon



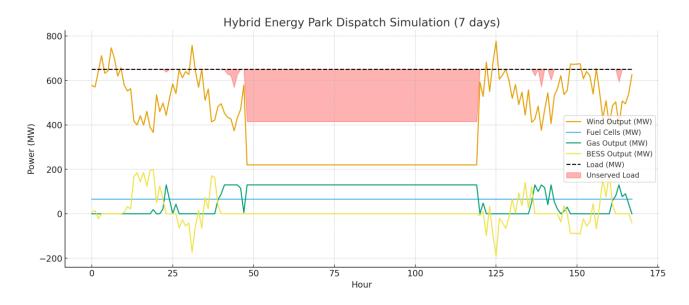
Integrated Hybrid System - 12-hour back-up



Hybrid Energy System with 12-hour back-up

Hybrid Energy System with 12-hour backup

Tier 3 & Tier 4 Redundancy Requirements

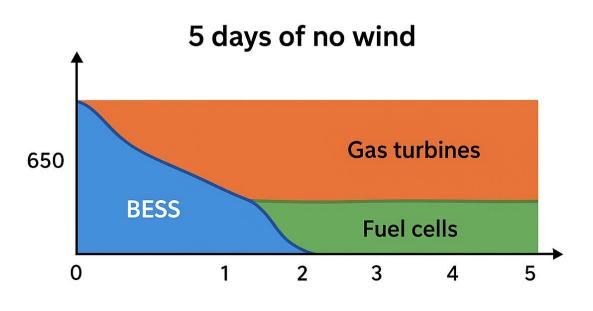

> 7-day simulation for proposed mix (70 % offshore wind, 10 % fuel cells, 20 % gas, plus 200 MW BESS) assuming:

Wind output: Highly variable, with a 3-day calm period dropping to ~20 % of installed capacity.

Fuel cells: Constant 65 MW.

Gas Turbines: 195 MW, dispatched fully during wind shortfall.

BESS: 650 MW x 7 h duration = 4,550 MWh used to smooth ramps and short-term deficits.



→ Unserved load: Peaks at 235 MW during the calm period; total unserved energy over 7 days is ~17.300 MWh.

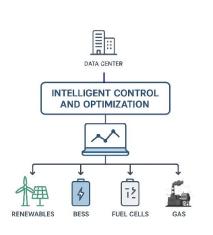
Conclusion: Even with gas and BESS, multi-day calm events cannot be fully covered. The system relies on partial curtailment unless more firm capacity is added.

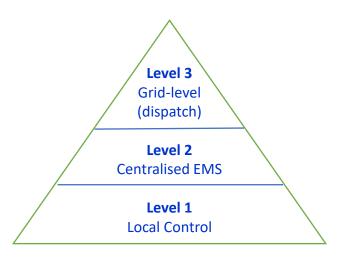
Tier 3 & Tier 4 Redundancy Requirements Served

Solution:

- Additional gas/fuel cell capacity to cover ~ 80% of peak load
- 2. Longer duration BESS with spare capacity
- Load shifting to smoothen out load and make use of available power sources

Component	Unit Capacity	<u>Units (N+1)</u>	<u>Total Power</u>
Fuel Cells	65 MW	2	130 MW
<u>Gas Turbines</u>	<u>195 MW</u>	2	390 MW
<u>BESS</u>	650 MW (>4 hr)	10%	715 MW




Intelligent Control and Optimisation

- Managing these hybrid systems requires advanced controls. That's where the Al-driven centralised dispatch system comes in.
- It monitors generation, load, and maintenance in real-time, optimising efficiency, extending asset life, and reducing stress on equipment.
- \triangleright Essentially, it operates as an autonomous, islanded power system \rightarrow smart, reliable, and fully integrated.

Closing: From Vision to Implementation

- What's exciting is that all this technology exists today.
- The challenge isn't technical feasibility. It's bringing the right mindset, partnerships, and forward-thinking customers together to implement it.
- Data centres, for example, are already embracing decentralised, hybrid power systems, combining reliability, flexibility, and sustainability in ways traditional grids can't match.
- At IPC, we're bridging proven power generation expertise with cutting-edge, hybrid technologies to deliver resilient, low-carbon systems at scale.
- We're eager to collaborate with partners who share this vision and want to make next-generation power a reality.

THANK YOU

